• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Process data based Anomaly detection in distributed energy generation using Neural Networks
 
  • Details
  • Full
Options
2020
Conference Paper
Title

Process data based Anomaly detection in distributed energy generation using Neural Networks

Abstract
The increasing share of renewable energies in the total energy supply includes a growing number of small, decentralized energy generation which also provides control energy. These decentralized stations are usually combined to a virtual power plant which takes over the monitoring and control of the individual participants via an Internet connection. This high degree of automation and the large number of frequently changing subscribers creates new challenges in terms of detecting anomalies. Quickly adaptable, variable and reliable methods of anomaly detection are required. This paper compares two approaches using Neural Networks (NN) with respect to their ability to detect anomalous behavior in real process data of a combined heat and power plant. In order to include process dynamics, one approach includes specifically engineered features, while the other approach uses Long-Short-Term-Memory (LSTM). Both approaches are able to detect rudimentary anomalies. For more demanding anomalies, the respective strengths and weaknesses of the two approaches become apparent.
Author(s)
Klein, Max
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Thiele, Gregor
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Fono, Adalbert
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Khorsandi, Niloufar
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Schade, David
Krüger, Jörg  
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Mainwork
International Conference on Control, Automation and Diagnosis, ICCAD 2020. Proceedings  
Project(s)
EnerSec
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Conference
International Conference on Control, Automation and Diagnosis (ICCAD) 2020  
DOI
10.1109/ICCAD49821.2020.9260563
Language
English
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Keyword(s)
  • Power generation

  • Artificial neural networks

  • Computer architecture

  • Monitoring

  • Anomaly detection

  • Generators

  • Time series analysis

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024