• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Efficient multiscale methods for viscoelasticity and fatigue of short fiber-reinforced polymers
 
  • Details
  • Full
Options
2019
Conference Paper
Title

Efficient multiscale methods for viscoelasticity and fatigue of short fiber-reinforced polymers

Abstract
To predict the nonlinear mechanical behavior of components made of short fiber-reinforced plastics (SFRP) under long term and cyclic loading, coupled process and component simulations are required. The injection molding process leads to locally varying fiber orientations within the component. This varying microstructure [1] significantly influences the viscoelastic and fatigue behavior. The interaction between the microstructure [2] and the nonlinear macroscopic properties is resolved by a coupled fast Fourier transformation and finite element two-scale method (FFT-FEM), where the fiber orientation tensor is obtained by analyzing mCT images or by the corresponding process simulation. The aim of this work is to reduce the numerical costs of such a multiscale method. In a first step, the highly efficient micro-scale solver FeelMath [3,4] using an FFT-based preconditioner is presented. Afterwards, a numerical scheme based on a precomputed database trained with FeelMath simulations on the microscale and a model order reduction algorithm, is discussed. The combination of these ideas reduces the numerical effort, such that the method is applicable for industrial problems. Comparative studies of the fully coupled and reduced model document the high accuracy of this approach. The overall performance of this methodology is demonstrated by three-dimensional, industrial applications.
Author(s)
Welschinger, F.
Köbler, J.
Andrä, H.
Müller, R.
Schneider, M.
Staub, S.
Mainwork
22nd Symposium on Composites 2019  
Conference
Symposium on Composites 2019  
DOI
10.4028/www.scientific.net/KEM.809.473
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024