Options
2019
Conference Paper
Title
Introducing noise in decentralized training of neural networks
Abstract
It has been shown that injecting noise into the neural network weights during the training process leads to a better generalization of the resulting model. Noise injection in the distributed setup is a straightforward technique and it represents a promising approach to improve the locally trained models. We investigate the effects of noise injection into the neural networks during a decentralized training process. We show both theoretically and empirically that noise injection has no positive effect in expectation on linear models, though. However for non-linear neural networks we empirically show that noise injection substantially improves model quality helping to reach a generalization ability of a local model close to the serial baseline.