• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Fusing Multi-label Classification and Semantic Tagging
 
  • Details
  • Full
Options
2020
Conference Paper
Title

Fusing Multi-label Classification and Semantic Tagging

Abstract
Companies have an increasing demand for enriching documents with metadata. In an applied setting, we present a three-part workflow for the combination of multi-label classification and semantic tagging using a collection of key-phrases. The workflow is illustrated on the basis of patent abstracts with the CPC scheme. The key-phrases are drawn from a training set collection of documents without manual interaction. The union of CPC labels and key-phrases provides a label set on which a multi-label classifier model is generated by supervised training. We show learning curves for both key-phrases and classification categories, and a semantic graph generated from cosine similarities. We conclude that, given sufficient training data, the number of label categories is highly scalable.
Author(s)
Kindermann, Jörg  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Beckh, Katharina  orcid-logo
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
Conference "Lernen, Wissen, Daten, Analysen", LWDA 2020. Proceedings. Online resource  
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Conference
Conference "Lernen, Wissen, Daten, Analysen" (LWDA) 2020  
Link
Link
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • multi-label classification

  • semantic tagging

  • prediction-based embedding spaces

  • patents

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024