• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. No Cloud on the Horizon: Probabilistic Gap Filling in Satellite Image Series
 
  • Details
  • Full
Options
2020
Conference Paper
Titel

No Cloud on the Horizon: Probabilistic Gap Filling in Satellite Image Series

Abstract
Spatio-temporal data sets such as satellite image series are of utmost importance for understanding global developments like climate change or urbanization. However, incompleteness of data can greatly impact usability and knowledge discovery. In fact, there are many cases where not a single data point in the set is fully observed. For filling gaps, we introduce a novel approach that utilizes Markov random fields(MRFs). We extend the probabilistic framework to also consider empirical prior information, which allows to train even on highly incomplete data. Moreover, we devise a way to make discrete MRFs predict continuous values via state superposition. Experiments on real-world remote sensing imagery suffering from cloud cover show that the proposed approach outperforms state-of-the-art gap filling techniques.
Author(s)
Fischer, Raphael
TU Dortmund
Piatkowski, Nico
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Pelletier, Charlotte
Univ. Bretagne Sud / IRISA
Webb, Geoffrey I.
Monash University, Melbourne, Australia
Petitjean, François
Monash University, Melbourne, Australia
Morik, Katharina
TU Dortmund
Hauptwerk
IEEE 7th International Conference on Data Science and Advanced Analytics, DSAA 2020. Proceedings
Project(s)
ML2R
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)
Konferenz
International Conference on Data Science and Advanced Analytics (DSAA) 2020
Thumbnail Image
DOI
10.1109/DSAA49011.2020.00069
Language
English
google-scholar
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Tags
  • probabilistic machine...

  • gap filling

  • spatio-temporal

  • graphical model

  • remote sensing

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022