• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. No Cloud on the Horizon: Probabilistic Gap Filling in Satellite Image Series
 
  • Details
  • Full
Options
2020
Conference Paper
Title

No Cloud on the Horizon: Probabilistic Gap Filling in Satellite Image Series

Abstract
Spatio-temporal data sets such as satellite image series are of utmost importance for understanding global developments like climate change or urbanization. However, incompleteness of data can greatly impact usability and knowledge discovery. In fact, there are many cases where not a single data point in the set is fully observed. For filling gaps, we introduce a novel approach that utilizes Markov random fields(MRFs). We extend the probabilistic framework to also consider empirical prior information, which allows to train even on highly incomplete data. Moreover, we devise a way to make discrete MRFs predict continuous values via state superposition. Experiments on real-world remote sensing imagery suffering from cloud cover show that the proposed approach outperforms state-of-the-art gap filling techniques.
Author(s)
Fischer, Raphael
TU Dortmund
Piatkowski, Nico  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Pelletier, Charlotte
Univ. Bretagne Sud / IRISA
Webb, Geoffrey I.
Monash University, Melbourne, Australia
Petitjean, François
Monash University, Melbourne, Australia
Morik, Katharina
TU Dortmund
Mainwork
IEEE 7th International Conference on Data Science and Advanced Analytics, DSAA 2020. Proceedings  
Project(s)
ML2R
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Conference
International Conference on Data Science and Advanced Analytics (DSAA) 2020  
DOI
10.1109/DSAA49011.2020.00069
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • probabilistic machine learning

  • gap filling

  • spatio-temporal

  • graphical model

  • remote sensing

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024