• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Feature Concatenation of Hyperspectral and DEM Data for Land Cover Classification
 
  • Details
  • Full
Options
2020
Conference Paper
Title

Feature Concatenation of Hyperspectral and DEM Data for Land Cover Classification

Abstract
Nonlinear effects in hyperspectral (HS) remote sensing data, caused by shadows, varying illumination conditions, as well as by directional reflectance variations, may lead to in accurate land cover classification. Including additional features of a simultaneously collected digital elevation model (DEM) generally improves the results. In this paper, we apply the Nonlinear Feature Normalization (NFN) to a weighted concatenation of HS channels and different sets of features derived from DEMs to improve the classification accuracy. The evaluation is performed on two data sets, where, the labeled data for one of them was derived using an interactive approach based on unsupervised classification. Using sensor data fusion and NFN transformation improved classification accuracy from a Cohens k of 0.6 to values over 0.8.
Author(s)
Gross, Wolfgang
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Bulatov, Dimitri  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Schreiner, Simon  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Middelmann, Wolfgang  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Mainwork
IGARSS 2020, IEEE International Geoscience and Remote Sensing Symposium. Proceedings  
Conference
International Geoscience and Remote Sensing Symposium (IGARSS) 2020  
DOI
10.1109/IGARSS39084.2020.9323131
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Keyword(s)
  • Nonlinear Feature Normalization

  • mitigating nonlinearities

  • hyperspectral

  • feature extraction

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024