• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Risiken für die Privatheit aufgrund von Maschinellem Lernen
 
  • Details
  • Full
Options
2021
Conference Paper
Title

Risiken für die Privatheit aufgrund von Maschinellem Lernen

Abstract
Maschinelle Lernverfahren sind aus unserem Alltag fast nicht mehr wegzudenken -selbstlernende Verfahren finden bereits in nahezu allen Bereichen des Lebens Anwendung. In vielen Fällen werden dabei auch private und/oder sensible Informationen verarbeitet. Da selbstlernende Verfahren in der Regel auf sich nicht überschneidenden Datenmengen trainiert und später angewendet werden, ging man lange davon aus, dass es nicht möglich sei, vom finalen Modell Rückschlüsse auf die zum Training verwendeten Daten zu ziehen. Ergebnissen aus der jüngeren Forschung demonstrieren jedoch, dass es sich bei dieser Annahme um einen Trugschluss handelt. Die vorliegende Arbeit erläutert welche Risiken sich für die Privatheit des Einzelnen im Rahmen von maschinellen Lernverfahren ergeben und wie dem unerwünschten Abgreifen von sensiblen Informationen bereits in der Trainingsphase entgegen gesteuert werden kann.
Author(s)
Battis, Anna-Verena
Graner, Lukas
Mainwork
INFORMATIK 2020 - Back to the Future  
Conference
Gesellschaft für Informatik (GI Jahrestagung) 2020  
DOI
10.18420/inf2020_75
Language
German
Fraunhofer-Institut für Sichere Informationstechnologie SIT  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024