• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Explanation Framework for Intrusion Detection
 
  • Details
  • Full
Options
2021
Conference Paper
Title

Explanation Framework for Intrusion Detection

Abstract
Machine learning and deep learning are widely used in various applications to assist or even replace human reasoning. For instance, a machine learning based intrusion detection system (IDS) monitors a network for malicious activity or specific policy violations. We propose that IDSs should attach a sufficiently understandable report to each alert to allow the operator to review them more efficiently. This work aims at complementing an IDS by means of a framework to create explanations. The explanations support the human operator in understanding alerts and reveal potential false positives. The focus lies on counterfactual instances and explanations based on locally faithful decision-boundaries.
Author(s)
Burkart, Nadia  
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Franz, Maximilian
Huber, Marco F.
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Mainwork
Machine Learning for Cyber Physical Systems  
Conference
International Conference on Machine Learning for Cyber Physical Systems (ML4CPS) 2020  
Open Access
File(s)
Download (429.6 KB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.1007/978-3-662-62746-4_9
10.24406/publica-r-409765
Language
English
Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB  
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA  
Keyword(s)
  • intrusion detection

  • Explainable Machine Learning

  • Counterfactual Explanations

  • detection

  • Explainable Artificial Intelligence (XAI)

  • maschinelles Lernen

  • Künstliche Intelligenz

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024