• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. A hybrid framework for bearing fault diagnosis using physics-guided neural networks
 
  • Details
  • Full
Options
2020
Conference Paper
Title

A hybrid framework for bearing fault diagnosis using physics-guided neural networks

Abstract
Emerging smart sensor systems are the main driver of innovation in many fields of application. A prominent example is condition-based monitoring and especially its subdomain fault diagnosis. The integration of advanced machine and deep learning-based signal processing into sensor systems enables new intelligent condition monitoring solutions. However, the data-based nature of machine and deep learning methods still impedes their applicability in many cases, due to a severe lack of data. In this paper, we introduce a new hybrid physics- and data-based framework aiming to solve the issue of small datasets for vibration-based fault diagnosis applied to rolling-element bearings. The framework combines a vibration simulation model and a neural network with embedded physics-based knowledge into a physics-guided neural network. Our approach aims to generate physically consistent data for the training of fault classifiers without extensive data acquisition.
Author(s)
Krupp, Lukas  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Hennig, Andreas  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Wiede, Christian  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Grabmaier, Anton  
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Mainwork
27th IEEE International Conference on Electronics Circuits and Systems, ICECS 2020. Conference Proceedings  
Conference
International Conference on Electronics, Circuits and Systems (ICECS) 2020  
DOI
10.1109/ICECS49266.2020.9294902
Language
English
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS  
Keyword(s)
  • deep learning

  • fault diagnosis

  • hybrid models

  • machine learning

  • physics-guided neural networks (PGNN)

  • rolling-element bearings

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024