• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Hopfield Networks for Vector Quantization
 
  • Details
  • Full
Options
2020
Conference Paper
Title

Hopfield Networks for Vector Quantization

Abstract
We consider the problem of finding representative prototypes within a set of data and solve it using Hopfield networks. Our key idea is to minimize the mean discrepancy between kernel density estimates of the distributions of data points and prototypes. We show that this objective can be cast as a quadratic unconstrained binary optimization problem which is equivalent to a Hopfield energy minimization problem. This result is of current interest as it suggests that vector quantization can be accomplished via adiabatic quantum computing.
Author(s)
Bauckhage, Christian  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Ramamurthy, Rajkumar  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Sifa, Rafet  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
Artificial Neural Networks and Machine Learning - ICANN 2020. Proceedings. Pt.II  
Project(s)
ML2R
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Conference
International Conference on Artificial Neural Networks (ICANN) 2020  
DOI
10.1007/978-3-030-61616-8_16
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024