• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. High Bandgap Absorber for Monolithic Perovskite Silicon Tandem Solar Cells Reaching 25.1% Certified Efficiency and Ways Beyond
 
  • Details
  • Full
Options
2020
Conference Paper
Title

High Bandgap Absorber for Monolithic Perovskite Silicon Tandem Solar Cells Reaching 25.1% Certified Efficiency and Ways Beyond

Other Title
High Bandgap Perovskite Absorber for Monolithic Perovskite Silicon Tandem Solar Cells Reaching 25.1% Certified Efficiency and Ways Beyond
Abstract
Perovskite silicon tandem solar cells (PSTSCs) can overcome the efficiency limitations of conventional single-junction silicon solar cells by reducing thermalization losses. To reach this goal, a perovskite absorber with an adapted high bandgap, good (photo-)stability, and high open-circuit voltage (VOC) is needed. First approaches tried halide mixing with high bromide content but compounds suffered from light-induced halide segregation causing voltage losses. In this work, a balanced tuning approach for [HC(NH2)2]1-xCsxPb(I1-yBry)3 perovskites is presented using reduced bromide content and compensating the bandgap effect by increasing the cesium(I) content. In that way, phase stability is reached while keeping the desired high bandgap. Moreover, surface passivation at the electron contact-perovskite interface highlights the important role of interfaces in the overall performance. [HC(NH2)2]0.75Cs0.25Pb(I0.8Br0.2)3 with an optical bandgap of ~1.69 eV is determined as the best candidate for tandem application. Implementation in monolithic PSTSCs with silicon heterojunction bottom solar cells enables high VOC of ~1836 mV with excellent photostability in a mesoscopic n-i-p configuration, and high fill factor of 80% and 25.1% certified stabilized efficiency in a planar p-i-n configuration. Heading towards higher efficiencies, a hybrid co-evaporation/spin coating route is applied for easy bandgap tuning and conformal perovskite film formation on µm-sized random pyramid-textured silicon.
Author(s)
Schulze, Patricia S.C.  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Bett, Alexander J.
Fraunhofer-Institut für Solare Energiesysteme ISE  
Kabakli, Özde Seyma
Fraunhofer-Institut für Solare Energiesysteme ISE  
Winkler, K.M.
Fraunhofer-Institut für Solare Energiesysteme ISE  
Mundt, Laura E.
SLAC National Accelerator Laboratory
Gerspacher, F.M.
Fraunhofer-Institut für Solare Energiesysteme ISE  
Zhang, Q.
Fraunhofer-Institut für Solare Energiesysteme ISE  
Hofmann, C.L.
Fraunhofer-Institut für Solare Energiesysteme ISE  
Bivour, Martin  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Hermle, Martin  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Glunz, Stefan W.  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Hillebrecht, H.
Klinikum der Albert-Ludwig-Universität, Freiburg  
Goldschmidt, Jan Christoph  
Fraunhofer-Institut für Solare Energiesysteme ISE  
Mainwork
37th European Photovoltaic Solar Energy Conference and Exhibition, EU PVSEC 2020  
Conference
European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC) 2020  
DOI
10.4229/EUPVSEC20202020-3AO.8.3
10.24406/h-409607
File(s)
Schulze_3AO.8.3.pdf (554.04 KB)
Rights
Under Copyright
Language
English
Fraunhofer-Institut für Solare Energiesysteme ISE  
Keyword(s)
  • Photovoltaik

  • Neuartige Photovoltaik-Technologien

  • Farbstoff- und Perowskitsolarzellen

  • Tandemsolarzellen auf kristallinem Silicium

  • Interfaces

  • Passivation

  • Perovskite

  • Tandem Solar Cell

  • Silicon

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024