• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Pretrained Transformers for Simple Question Answering over Knowledge Graphs
 
  • Details
  • Full
Options
2019
Conference Paper
Title

Pretrained Transformers for Simple Question Answering over Knowledge Graphs

Abstract
Answering simple questions over knowledge graphs is a well-studied problem in question answering. Previous approaches for this task built on recurrent and convolutional neural network based architectures that use pretrained word embeddings. It was recently shown that finetuning pretrained transformer networks (e.g. BERT) can outperform previous approaches on various natural language processing tasks. In this work, we investigate how well BERT performs on SimpleQuestions and provide an evaluation of both BERT and BiLSTM-based models in limited-data scenarios.
Author(s)
Lukovnikov, Denis  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Fischer, Asja
Ruhr Universität Bochum/Germany
Lehmann, Jens  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
The Semantic Web - ISWC 2019. 18th International Semantic Web Conference. Proceedings. Pt.I  
Conference
International Semantic Web Conference (ISWC) 2019  
File(s)
Download (300.37 KB)
DOI
10.1007/978-3-030-30793-6_27
10.24406/publica-r-409553
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024