• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Application of sub-cooled superfluid helium for cavity cooling at linac-based free electron lasers, energy recovery and proton linacs
 
  • Details
  • Full
Options
2020
Conference Paper
Title

Application of sub-cooled superfluid helium for cavity cooling at linac-based free electron lasers, energy recovery and proton linacs

Abstract
In order to build a compact linear accelerator, high acceleration gradients of superconducting radio frequency (SRF) cavities have to be achieved. In many large accelerators, e.g. XFEL, CEBAF or SNS, operational limitations are caused either by a limit on available overall cooling power of refrigerators or on cooling capabilities of sc cavities. So, for the further improving of sc cavity cooling, it is possible to increase either a quality factor (Q 0) or to improve a heat transfer at the cavity surfaces. Application of a sub-cooled superfluid helium gives several advantages, e.g. higher heat flux densities, longer time for onset of a film boiling regime and shorter recovery time, reduced Kapitza resistances, etc. In the present paper, application of sub-cooled superfluid (sf) helium for linac-based Free Electron Lasers, Energy Recovery and Proton Linacs is considered. In order to limit the present discussion, its application to CEBAF/SNS-style cryomodules is discussed in detail. For operation at higher RF power levels, further cooling improvements of a fundamental power coupler are needed and design modifications also presented.
Author(s)
Putselyk, S.
Mainwork
Advances in Cryogenic Engineering  
Conference
Cryogenic Engineering Conference (CEC) 2019  
Open Access
DOI
10.1088/1757-899X/755/1/012098
Language
English
Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024