• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Novelty Discovery with Kernel Minimum Enclosing Balls
 
  • Details
  • Full
Options
2020
Conference Paper
Title

Novelty Discovery with Kernel Minimum Enclosing Balls

Abstract
We introduce the idea of utilizing ensembles of Kernel Minimum Enclosing Balls to detect novel datapoints. To this end, we propose a novelty scoring methodology that is based on combining outcomes of the corresponding characteristic functions of a set of fitted balls. We empirically evaluate our model by presenting experiments on synthetic as well as real world datasets.
Author(s)
Sifa, Rafet  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Bauckhage, Christian  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
Learning and intelligent optimization. 14th International Conference, LION 2020  
Project(s)
ML2R
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Conference
International Conference on Learning and Intelligent Optimization (LION) 2020  
DOI
10.1007/978-3-030-53552-0_37
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024