• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Semantic information in sensor networks: How to combine existing ontologies, vocabularies and data schemes to fit a metrology use case
 
  • Details
  • Full
Options
2020
Konferenzbeitrag
Titel

Semantic information in sensor networks: How to combine existing ontologies, vocabularies and data schemes to fit a metrology use case

Abstract
Self-describing sensors and measurements are a key component to establish (semi-)automated data-analysis in the context of Industry 4.0. In this contribution, multiple popular ontologies and vocabularies in the field of metrology are evaluated regarding their suitability for an industry-oriented metrological use case. The results are used to map necessary concepts from existing knowledge bases into a coherent new ontology that fulfills metrological requirements of sensor and measurement descriptions. We are considering use cases where aspects of sensor networks, network topology, network robustness, information fusion, calibration models for dynamic uncertainty, correct metrological representation and implementation performance are of interest.
Author(s)
Gruber, Maximilian
Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin
Eichstädt, Sascha
Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin
Neumann, Julia
Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin
Paschke, Adrian
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS
Hauptwerk
IEEE International Workshop on Metrology for Industry 4.0 & IoT 2020. Proceedings
Konferenz
International Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT) 2020
Thumbnail Image
DOI
10.1109/MetroInd4.0IoT48571.2020.9138282
Language
Englisch
google-scholar
FOKUS
Tags
  • metadata

  • Ontology

  • Sensor Network

  • information fusion

  • uncertainty

  • international system ...

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022