• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. To Detect or not to Detect: The Right Faces to Morph
 
  • Details
  • Full
Options
2019
Conference Paper
Title

To Detect or not to Detect: The Right Faces to Morph

Abstract
Recent works have studied the face morphing attack detection performance generalization over variations in morphing approaches, image re-digitization, and image source variations. However, these works assumed a constant approach for selecting the images to be morphed (pairing) across their training and testing data. A realistic variation in the pairing protocol in the training data can result in challenges and opportunities for a stable attack detector. This work extensively study this issue by building a novel database with three different pairing protocols and two different morphing approaches. We study the detection generalization over these variations for single image and differential attack detection, along with handcrafted and CNN-based features. Our observations included that training an attack detection solution on attacks created from dissimilar face images, in contrary to the common practice, can result in an overall more generalized detection performance. Moreover, we found that differential attack detection is very sensitive to variations in morphing and pairing protocols.
Author(s)
Damer, Naser  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Saladie, Alexandra Moseguí
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Zienert, Steffen
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Wainakh, Yaza
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Kirchbuchner, Florian  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Kuijper, Arjan  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Terhörst, Philipp  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Mainwork
12th IAPR International Conference on Biometrics, ICB 2019  
Conference
International Conference on Biometrics (ICB) 2019  
DOI
10.1109/ICB45273.2019.8987316
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • CRISP

  • Lead Topic: Visual Computing as a Service

  • Research Line: Computer vision (CV)

  • biometrics

  • spoofing attacks

  • face recognition

  • ATHENE

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024