• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Predicting Missing Links Using PyKEEN
 
  • Details
  • Full
Options
2019
Conference Paper
Title

Predicting Missing Links Using PyKEEN

Abstract
PyKEEN is a framework, which integrates several approaches to compute knowledge graph embeddings (KGEs). We demonstrate the usage of PyKEEN in an biomedical use case, i.e. we trained and evaluated several KGE models on a biological knowledge graph containing genes annotations to pathways and pathway hierarchies from well-known databases. We used the best performing model to predict new links and present an evaluation in collaboration with a domain expert.
Author(s)
Ali, Mehdi  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Hoyt, Charles Tapley
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Domingo-Fernandez, Daniel
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Lehmann, Jens  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
ISWC 2019 Satellite Tracks (Posters & Demonstrations, Industry, and Outrageous Ideas). Proceedings. Online resource  
Project(s)
MLWin
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Conference
International Semantic Web Conference (ISWC) 2019  
Open Access
DOI
10.24406/publica-fhg-405535
File(s)
N-564999.pdf (303.49 KB)
Rights
CC BY 4.0: Creative Commons Attribution
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Keyword(s)
  • Knowledge Graphs

  • bioinformatic

  • network representation learning

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024