• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. RatVec: A General Approach for Low-dimensional Distributed Vector Representations via Rational Kernels
 
  • Details
  • Full
Options
2019
Conference Paper
Title

RatVec: A General Approach for Low-dimensional Distributed Vector Representations via Rational Kernels

Abstract
We present a general framework, RatVec, for learning vector representations of non-numeric entities based on domain-specific similarity functions interpreted as rational kernels. We show competitive performance using k-nearest neighbors in the protein family classification task and in Dutch spelling correction. To promote re-usability and extensibility, we have made our code and pre-trained models available athttps://github.com/ratvec.
Author(s)
Brito, Eduardo
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Georgiev, Bogdan  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Domingo-Fernández, Daniel
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Hoyt, Charles Tapley
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Bauckhage, Christian  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
Conference on "Lernen, Wissen, Daten, Analysen", LWDA 2019. Proceedings. Online resource  
Conference
Conference "Lernen, Wissen, Daten, Analysen" (LWDA) 2019  
Link
Link
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
Keyword(s)
  • representation learning

  • Kernel Principal Component Analysis

  • bioinformatic

  • natural language processing

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024