• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. RatVec: A General Approach for Low-dimensional Distributed Vector Representations via Rational Kernels
 
  • Details
  • Full
Options
2019
Conference Paper
Titel

RatVec: A General Approach for Low-dimensional Distributed Vector Representations via Rational Kernels

Abstract
We present a general framework, RatVec, for learning vector representations of non-numeric entities based on domain-specific similarity functions interpreted as rational kernels. We show competitive performance using k-nearest neighbors in the protein family classification task and in Dutch spelling correction. To promote re-usability and extensibility, we have made our code and pre-trained models available athttps://github.com/ratvec.
Author(s)
Brito, Eduardo
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Georgiev, Bogdan
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Domingo-Fernández, Daniel
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI
Hoyt, Charles Tapley
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI
Bauckhage, Christian
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Hauptwerk
Conference on "Lernen, Wissen, Daten, Analysen", LWDA 2019. Proceedings. Online resource
Konferenz
Conference "Lernen, Wissen, Daten, Analysen" (LWDA) 2019
Thumbnail Image
Externer Link
Externer Link
Language
English
google-scholar
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI
Tags
  • representation learni...

  • Kernel Principal Comp...

  • bioinformatic

  • natural language proc...

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022