• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Support Estimation in Frequent Itemset Mining by Locality Sensitive Hashing
 
  • Details
  • Full
Options
2019
Conference Paper
Title

Support Estimation in Frequent Itemset Mining by Locality Sensitive Hashing

Abstract
The main computational effort in generating all frequent itemsets in a transactional database is in the step of deciding whether an itemset is frequent, or not. We present a method for estimating itemset supports with two-sided error. In a preprocessing step our algorithm first partitions the database into groups of similar transactions by using locality sensitive hashing and calculates a summary for each of these groups. The support of a query itemset is then estimated by means of these summaries. Our preliminary empirical results indicate that the proposed method results in a speed-up of up to a factor of 50 on large datasets. The F-measure of the output patterns varies between 0.83 and 0.99.
Author(s)
Pick, Annika  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Horvath, Tamas  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Wrobel, Stefan  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
Conference on "Lernen, Wissen, Daten, Analysen", LWDA 2019. Proceedings. Online resource  
Conference
Conference "Lernen, Wissen, Daten, Analysen" (LWDA) 2019  
Open Access
File(s)
Download (202.62 KB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.24406/publica-fhg-405299
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024