• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Echo State Networks for Named Entity Recognition
 
  • Details
  • Full
Options
2019
Conference Paper
Title

Echo State Networks for Named Entity Recognition

Abstract
This paper explores a simple method for obtaining contextual word representations. Recently, it was shown that random sentence representations obtained from echo state networks (ESNs) were able to achieve near state-of-the-art results in several sequence classification tasks. We explore a similar direction while considering a sequence labeling task specifically named entity recognition (NER). The idea is to simply use reservoir states of an ESN as contextual word embeddings by passing pre-trained word-embeddings as its input. Experimental results show that our approach achieves competitive results in terms of accuracy and faster training times when compared to state-of-the-art methods. In addition, we provide an empirical evaluation of hyper-parameters that influence this performance.
Author(s)
Ramamurthy, Rajkumar  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Stenzel, Robin
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Sifa, Rafet  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Ladi, Anna  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Bauckhage, Christian  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
Artificial Neural Networks and Machine Learning - ICANN 2019. Workshop and Special Sessions. Proceedings  
Conference
International Conference on Artificial Neural Networks (ICANN) 2019  
DOI
10.1007/978-3-030-30493-5_11
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024