• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Performance Evaluation of GLOSA-Algorithms under Realistic Traffic Conditions Using C2I-Communication
 
  • Details
  • Full
Options
2019
  • Konferenzbeitrag

Titel

Performance Evaluation of GLOSA-Algorithms under Realistic Traffic Conditions Using C2I-Communication

Abstract
The aim of Green Light Optimized Speed Advisory (GLOSA) systems is to assist individual vehicles approaching an intersection with speed advices (either as single target speed or as complex speed-distance relation) in order to fulfill a given objective. Common objectives include the minimization of fuel usage, emissions and/or delay. The literature provides a wide selection of GLOSA-algorithms addressing different aspects of a real world application, like surrounding traffic, fixed time or actuated traffic lights and mode of communication. However, previous research usually addressed only a subset of possible aspects. Therefore, our goal is to investigate how the existing algorithms hold up in a scenario under largely realistic conditions. We measure the performance (in terms of overall fuel usage, carbon dioxide emissions and delay) of the different GLOSA-algorithms and identify potential shortcomings.
Author(s)
Klöppel, Michael
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI
Grimm, Jan
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI
Strobl, Severin
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI
Auerswald, Rico
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI
Hauptwerk
Data Analytics: Paving the Way to Sustainable Urban Mobility
Konferenz
Conference on Sustainable Urban Mobility (CSUM) 2018
Thumbnail Image
DOI
10.1007/978-3-030-02305-8_6
Language
Englisch
google-scholar
IVI
Tags
  • GLOSA

  • speed advisory system...

  • connected vehicles

  • ITS-G5

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022