• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Improving robust speech recognition for German oral history interviews using multi-condition training
 
  • Details
  • Full
Options
2018
Conference Paper
Title

Improving robust speech recognition for German oral history interviews using multi-condition training

Abstract
In historical sciences, the term oral history refers to conducting and analyzing interviews with contemporary witnesses. To significantly reduce the resources needed to transcribe these interviews, we work on the adaptation of our speech recognition system to oral history interviews. In this work, we build on our previous experiments by using 1000 hours of training data from the broadcast domain. Utilizing the Kaldi ASR toolkit, we show that advanced chain acoustic models greatly benefit from large data sets and achieve remarkable performance on several test sets. To further improve the speech recognition performance on oral history interviews, we apply artificially created multi-condition data to the chain model training and reduce the WER on the oral history test set compared to a clean trained chain model by 4.8% absolute and 13.9% relative.
Author(s)
Gref, Michael  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Schmidt, Christoph Andreas  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Köhler, Joachim  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Mainwork
Speech communication. 13. ITG-Fachtagung Sprachkommunikation 2018  
Project(s)
KA3
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Conference
Fachtagung Sprachkommunikation 2018  
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • robust speech recognition

  • multi-condition training

  • data augmentation

  • acoustic modeling

  • oral history

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024