Options
2018
Conference Paper
Title
Generation of adversarial examples to prevent misclassification of deep neural network based condition monitoring systems for cyber-physical production systems
Abstract
Deep neural network based condition monitoring systems are used to detect system failures of cyber-physical production systems. However, a vulnerability of deep neural networks are adversarial examples. They are manipulated inputs, e.g. process data, with the ability to mislead a deep neural network into misclassification. Adversarial example attacks can manipulate the physical production process of a cyber-physical production system without being recognized by the condition monitoring system. Manipulation of the physical process poses a serious threat for production systems and employees. This paper introduces CyberProtect, a novel approach to prevent misclassification caused by adversarial example attacks. CyberProtect generates adversarial examples and uses them to retrain deep neural networks. This results in a hardened deep neural network with a significant reduced misclassification rate. The proposed countermeasure increases the classification rate from 20% to 82%, as proved by empirical results.
Open Access
File(s)
Rights
Under Copyright
Language
English