• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Automatic analysis of sewer pipes based on unrolled monocular fisheye images
 
  • Details
  • Full
Options
2018
Conference Paper
Title

Automatic analysis of sewer pipes based on unrolled monocular fisheye images

Abstract
The task of detecting and classifying damages in sewer pipes offers an important application area for computer vision algorithms. This paper describes a system, which is capable of accomplishing this task solely based on low quality and severely compressed fisheye images from a pipe inspection robot. Relying on robust image features, we estimate camera poses, model the image lighting, and exploit this information to generate high quality cylindrical unwraps of the pipes surfaces. Based on the generated images, we apply semantic labeling based on deep convolutional neural networks to detect and classify defects as well as structural elements.
Author(s)
Künzel, Johannes
Humboldt Universität Berlin
Werner, Thomas  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Eisert, Peter
Humboldt Universität Berlin
Waschnewski, Jan
Berliner Wasserbetriebe
Möller, Ronja  
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Hilpert, Ralf
Berliner Wasserbetriebe
Mainwork
IEEE Winter Conference on Applications of Computer Vision, WACV 2018. Proceedings  
Project(s)
AUZUKA
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Conference
Winter Conference on Applications of Computer Vision (WACV) 2018  
Open Access
DOI
10.1109/WACV.2018.00223
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
Keyword(s)
  • camera

  • estimation

  • mathematical model

  • robot vision system

  • neural network

  • semantic labeling

  • deep learning

  • machine learning

  • fisheye

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024