• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Linear solvers for the finite pointset method
 
  • Details
  • Full
Options
2018
Conference Paper
Title

Linear solvers for the finite pointset method

Abstract
Many simulations in Computational Engineering suffer from slow convergence rates of their linear solvers. This is also true for the Finite Pointset Method (FPM), which is a Meshfree Method used in Computational Fluid Dynamics. FPM uses Generalized Finite Difference Methods (GFDM) in order to discretize the arising differential operators. Like other Meshfree Methods, it does not involve a fixed mesh; FPM uses a point cloud instead. We look at the properties of linear systems arising from GFDM on point clouds and their implications on different types of linear solvers, specifically focusing on the differences between one-level solvers and Multigrid Methods, including Algebraic Multigrid (AMG). With the knowledge about the properties of the systems, we develop a new Multigrid Method based on point cloud coarsening. Numerical experiments show that our Multicloud method has the same advantages as other Multigrid Methods; in particular its convergence rate does not deteriorate when refining the point cloud. In future research, we will examine its applicability to a broader range of problems and investigate its advantages in terms of computational performance.
Author(s)
Nick, Fabian
Metsch, Bram  
Plum, Hans-Joachim  
Mainwork
Recent Advances in Computational Engineering  
Conference
International Conference on Computational Engineering (ICCE) 2017  
DOI
10.1007/978-3-319-93891-2_6
Language
English
Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024