• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Formal query generation for question answering over knowledge bases
 
  • Details
  • Full
Options
2018
Conference Paper
Title

Formal query generation for question answering over knowledge bases

Abstract
Question answering (QA) systems often consist of several components such as Named Entity Disambiguation (NED), Relation Extraction (RE), and Query Generation (QG). In this paper, we focus on the QG process of a QA pipeline on a large-scale Knowledge Base (KB), with noisy annotations and complex sentence structures. We therefore propose SQG, a SPARQL Query Generator with modular architecture, enabling easy integration with other components for the construction of a fully functional QA pipeline. SQG can be used on large open-domain KBs and handle noisy inputs by discovering a minimal subgraph based on uncertain inputs, that it receives from the NED and RE components. This ability allows SQG to consider a set of candidate entities/relations, as opposed to the most probable ones, which leads to a significant boost in the performance of the QG component. The captured subgraph covers multiple candidate walks, which correspond to SPARQL queries. To enhance the accuracy, we pre sent a ranking model based on Tree-LSTM that takes into account the syntactical structure of the question and the tree representation of the candidate queries to find the one representing the correct intention behind the question. SQG outperforms the baseline systems and achieves a macro F1-measure of 75% on the LC-QuAD dataset.
Author(s)
Zafar, H.
Napolitano, Giulio  
Lehmann, Jens  
Mainwork
The Semantic web. 15th international conference, ESWC 2018  
Conference
European Semantic Web Conference (ESWC) 2018  
DOI
10.1007/978-3-319-93417-4_46
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024