Options
2018
Conference Paper
Title
Representing argumentation schemes with constraint handling rules (CHR)
Abstract
We present a high-level declarative programming language for representing argumentation schemes, where schemes represented in this language can be easily validated by domain experts, including developers of argumentation schemes in informal logic and philosophy, and serve as executable specifications for automatically constructing arguments, when applied to a set of assumptions. Since argumentation schemes are defeasible inference rules, both premises and conclusions of schemes can be second-order schema variables, i.e. without a fixed predicate symbol. Thus, while particular schemes can be and have been implemented in computer programs, in general argumentation schemes cannot be represented as executable specifications using logic programming languages based on first-order logic, such as Prolog. Moreover, even if the conclusion (head) of Prolog rules could be second-order variables, a depth-first, backward-chaining search strategy, as typically used in logic programming, would usually cause such programs to not terminate, since every goal would match the head of such a scheme, including all goals created by instantiating the body of the same scheme. The language for representing argumentation schemes presented here, for the purpose of automatically constructing arguments, uses Constraint Handling Rules (CHR), a declarative, Turing complete, forwards-chaining, rule-based programming language introduced by Thom Fruhwirth in 1991. We also report on a legal pilot application, called DUCK, which uses the system in a web application to help cloud service providers comply with the new European General Data Protection Regulation (GDPR).
File(s)
Rights
Under Copyright
Language
English