• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Mining strongly closed itemsets from data streams
 
  • Details
  • Full
Options
2017
Conference Paper
Title

Mining strongly closed itemsets from data streams

Abstract
We consider the problem of mining strongly closed itemsets from transactional data streams. Compactness and stability against changes in the input are two characteristic features of this kind of itemsets that make them appealing for different applications. Utilizing their algebraic and algorithmic properties, we propose an algorithm based on reservoir sampling for approximating this type of itemsets in the landmark streaming setting, prove its correctness, and show empirically that it yields a considerable speed-up over a straightforward naive algorithm without any significant loss in precision and recall. As a motivating application, we experimentally demonstrate the suitability of strongly closed itemsets to concept drift detection in transactional data streams.
Author(s)
Trabold, Daniel  
Horvath, Tamas  
Mainwork
Discovery science. 20th International Conference, DS 2017  
Conference
International Conference on Discovery Science (DS) 2017  
DOI
10.1007/978-3-319-67786-6_18
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024