• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Ligand-based virtual screening with co-regularised support vector regression
 
  • Details
  • Full
Options
2016
Conference Paper
Title

Ligand-based virtual screening with co-regularised support vector regression

Abstract
We consider the problem of ligand affinity prediction as a regression task, typically with few labelled examples, many unlabelled instances, and multiple views on the data. In chemoinformatics, the prediction of binding affinities for protein ligands is an important but also challenging task. As protein-ligand bonds trigger biochemical reactions, their characterisation is a crucial step in the process of drug discovery and design. However, the practical determination of ligand affinities is very expensive, whereas unlabelled compounds are available in abundance. Additionally, many different vectorial representations for compounds (molecular fingerprints) exist that cover different sets of features. To this task we propose to apply a co-regularisation approach, which extracts information from unlabelled examples by ensuring that individual models trained on different fingerprints make similar predictions. We extend support vector regression similarly to the existing co-regularised least squares regression (CoRLSR) and obtain a co-regularised support vector regression (CoSVR). We empirically evaluate the performance of CoSVR on various protein-ligand datasets. We show that CoSVR outperforms CoRLSR as well as existing state-of-the- art approaches that do not take unlabelled molecules into account. Additionally, we provide a theoretical bound on the Rademacher complexity for CoSVR.
Author(s)
Ullrich, Katrin  
Kamp, Michael  
Gärtner, Thomas  
Vogt, Martin  
Wrobel, Stefan  
Mainwork
16th IEEE International Conference on Data Mining Workshops 2016  
Conference
International Conference on Data Mining (ICDM) 2016  
Workshop "Data Mining in Biomedical Informatics and Healthcare" (DMBIH) 2016  
DOI
10.1109/ICDMW.2016.0044
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024