• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Exploiting bus communication to improve cache attacks on systems-on-chips
 
  • Details
  • Full
Options
2017
Conference Paper
Title

Exploiting bus communication to improve cache attacks on systems-on-chips

Abstract
Systems-on-Chips (SoCs) are one of the key enabling technologies for the Internet-of-Things (IoT). Given the continuous distribution of IoT devices, data confidentiality and user privacy are of utmost importance. However, with the growing complexity of SoCs, the risk of malware infections and trojans introduced at design time increases significantly. A vital threat to system security are so-called side-channel attacks based on cache observations. While mainly studied on desktop and server systems, recent publications have analyzed cache attacks on mobile devices and network-on-chip platforms. In this work, we investigate cache attacks on System-on-Chips implementing bus based communication. To this end, we present two contributions. First, we demonstrate an improved Prime+Probe based cache attack on AES-128 that, for the first time, exploits the bus communication to increase its efficiency. Second, we integrate two countermeasures (Shuffling and Mini-table) and evaluate their impact on the attack. The results show that our improved attack recovers the full key twice as fast as Prime+Probe without exploiting bus communication. Moreover, we propose protection techniques that are feasible and effectively mitigate both original and improved attack.
Author(s)
Sepulveda, J.
Gross, M.
Zankl, A.
Sigl, G.
Mainwork
IEEE Computer Society Annual Symposium on VLSI , ISVLSI 2017. Proceedings  
Conference
IEEE Computer Society Annual Symposium on VLSI (ISVLSI) 2017  
DOI
10.1109/ISVLSI.2017.57
Language
English
Fraunhofer-Institut für Angewandte und Integrierte Sicherheit AISEC  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024