Options
2016
Conference Paper
Title
Fluid-structure coupled computations of the NREL 5MW wind turbine blade during standstill
Abstract
This work is aimed at investigating the aero-elastic behavior of a wind turbine blade subjected to strong wind speeds during standstill. This type of investigation still remains a challenge for most wind turbine simulation codes. For this purpose, a new developed high fidelity framework for fluid-structure coupled computations of wind turbines is presented and numerical simulations are conducted on the NREL 5MW reference wind turbine. The framework couples the open-source Computational Fluid Dynamics (CFD) toolbox OpenFOAM with an in-house beam solver, based on the Geometrically Exact Beam Theory (GEBT). The obtained results are compared to the aero-elastic tool FAST, which is based on the Blade Element Momentum theory (BEM) and can be considered as a state-of-the-art wind turbine simulation code. The evaluation of the fluid-structure coupled CFD simulations reveals clear differences in the results compared to FAST. While the mean deflections show a reasonable agreement , the dynamics of the edgewise deflections differ significantly. Furthermore, the effect of an explicit coupling versus an implicit coupling strategy on the results is investigated.