• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Weighted robust PCA for statistical shape modeling
 
  • Details
  • Full
Options
2016
Conference Paper
Title

Weighted robust PCA for statistical shape modeling

Abstract
Statistical shape models (SSMs) play an important role in medical image analysis. A sufficiently large number of high quality datasets is needed in order to create a SSM containing all possible shape variations. However, the available datasets may contain corrupted or missing data due to the fact that clinical images are often captured incompletely or contain artifacts. In this work, we propose a weighted Robust Principal Component Analysis (WRPCA) method to create SSMs from incomplete or corrupted datasets. In particular, we introduce a weighting scheme into the conventional Robust Principal Component Analysis (RPCA) algorithm in order to discriminate unusable data from meaningful ones in the decomposition of the training data matrix more accurately. For evaluation, the proposed WRPCA is compared with conventional RPCA on both corrupted (63 CT datasets of the liver) and incomplete datasets (15 MRI datasets of the human foot). The results show a significant improvement in terms of reconstruction accuracy on both datasets.
Author(s)
Ma, Jingting
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Lin, Feng
Nanyang Technological University, Singapore
Honsdorf, Jonas
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Lentzen, Katharina
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Wesarg, Stefan  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Erdt, Marius  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Mainwork
Medical imaging and augmented reality. 7th international conference, MIAR 2016  
Conference
International Conference on Medical Imaging and Augmented Reality (MIAR) 2016  
DOI
10.1007/978-3-319-43775-0_31
Language
English
IDM@NTU  
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • statistical shape models (SSM)

  • shape reconstruction

  • Lead Topic: Individual Health

  • Research Line: Computer graphics (CG)

  • Research Line: Modeling (MOD)

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024