• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. K-Means clustering via the Frank-Wolfe algorithm
 
  • Details
  • Full
Options
2016
Conference Paper
Title

K-Means clustering via the Frank-Wolfe algorithm

Abstract
We show that k-means clustering is a matrix factorization problem. Seen from this point of view, k-means clustering can be computed using alternating least squares techniques and we show how the constrained optimization steps involved in this procedure can be solved efficiently using the Frank-Wolfe algorithm.
Author(s)
Bauckhage, Christian  
Mainwork
LWDA 2016, Lernen, Wissen, Daten, Analysen  
Conference
Conference "Lernen, Wissen, Daten, Analysen" (LWDA) 2016  
Link
Link
Language
English
Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024