• English
  • Deutsch
  • Log In
    Password Login
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. AAC encoding detection and bitrate estimation using a convolutional neural network
 
  • Details
  • Full
Options
2016
Conference Paper
Titel

AAC encoding detection and bitrate estimation using a convolutional neural network

Abstract
In this paper, we propose a new method for AAC encoding detection and bitrate estimation from PCM material. The algorithm is based on a Convolutional Neural Network that can distinguish between eight different bitrates. It achieves an average accuracy of 94.65% by analysis of only 116.10 ms of content.
Author(s)
Seichter, Daniel
Cuccovillo, Luca
Aichroth, Patrick
Hauptwerk
IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016. Proceedings
Konferenz
International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2016
Thumbnail Image
DOI
10.1109/ICASSP.2016.7472041
Language
English
google-scholar
Fraunhofer-Institut für Digitale Medientechnologie IDMT
Tags
  • audio forensics

  • neural networks

  • quality assessment

  • MPEG-2 AAC

  • deep learning

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022