Options
2014
Conference Paper
Title
Privacy-aware distributed mobility data analytics
Abstract
We propose an approach to preserve privacy in an analytical processing within a distributed setting, and tackle the problem of obtaining aggregated information about vehicle traffic in a city from movement data collected by individual vehicles and shipped to a central server. Movement data are sensitive because they may describe typical movement behaviors and therefore be used for re-identification of individuals in a database.We provide a privacy-preserving framework for movement data aggregation based on trajectory generalization in a distributed environment. The proposed solution, based on the differential privacy model and on sketching techniques for efficient data compression, provides a formal data protection safeguard. Using real-life data, we demonstrate the effectiveness of our approach also in terms of data utility preserved by the data transformation.