• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Challenges in representation learning: A report on three machine learning contests
 
  • Details
  • Full
Options
2013
Konferenzbeitrag
Titel

Challenges in representation learning: A report on three machine learning contests

Abstract
The ICML 2013 Workshop on Challenges in Representation Learning focused on three challenges: the black box learning challenge, the facial expression recognition challenge, and the multimodal learning challenge. We describe the datasets created for these challenges and summarize the results of the competitions. We provide suggestions for organizers of future challenges and some comments on what kind of knowledge can be gained from machine learning competitions.
Author(s)
Goodfellow, Ian J.
Erhan, Dumitru
Carrier, Pierre Luc
Courville, Aaron C.
Mirza, Mehdi
Hamner, Benjamin
Cukierski, William
Tang, Yichuan
Thaler, David
Lee, Dong-Hyun
Zhou, Yingbo
Ramaiah, Chetan
Feng, Fangxiang
Li, Ruifan
Wang, Xiaojie
Athanasakis, Dimitris
Shawe-Taylor, John
Milakov, Maxim
Park, John
Ionescu, Radu-Tudor
Popescu, Marius
Grozea, Cristian
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS
Bergstra, James
Xie, Jingjing
Romaszko, Lukasz
Xu, Bing
Zhang, Chuang
Bengio, Yoshua
Hauptwerk
Neural information processing. 20th International Conference, ICONIP 2013. Vol.3
Konferenz
International Conference on Neural Information Processing (ICONIP) 2013
Thumbnail Image
DOI
10.1007/978-3-642-42051-1_16
Language
Englisch
google-scholar
FOKUS
Tags
  • machine learning

  • challenge

  • face recognition

  • computer vision

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022