• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Challenges in representation learning: A report on three machine learning contests
 
  • Details
  • Full
Options
2013
Presentation
Title

Challenges in representation learning: A report on three machine learning contests

Title Supplement
Published on arXiv
Abstract
The ICML 2013 Workshop on Challenges in Representation Learning focused on three challenges: the black box learning challenge, the facial expression recognition challenge, and the multimodal learning challenge. We describe the datasets created for these challenges and summarize the results of the competitions.We provide suggestions for organizers of future challenges and some comments on what kind of knowledge can be gained from machine learning competitions.
Author(s)
Goodfellow,Ian J.
Erhan, Dumitru
Carrier, Pierre Luc
Courville, Aaron C.
Mirza, Mehdi
Hamner, Benjamin
Cukierski, William
Tang, Yichuan
Thaler, David
Lee, Dong-Hyun
Zhou, Yingbo
Ramaiah, Chetan
Feng, Fangxiang
Li, Ruifan
Wang, Xiaojie
Athanasakis, Dimitris
Shawe-Taylor, John
Milakov, Maxim
Park, John
Ionescu, Radu-Tudor
Popescu, Marius
Grozea, Cristian  
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Bergstra, James
Xie, Jingjing
Romaszko, Lukasz
Xu, Bing
Zhang, Chuang
Bengio, Yoshua
Conference
Workshop on Challenges in Representation Learning 2013  
International Conference on Machine Learning (ICML) 2013  
Link
Link
Language
English
Fraunhofer-Institut für Offene Kommunikationssysteme FOKUS  
Keyword(s)
  • machine learning

  • challenge

  • face recognition

  • computer vision

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024