• English
  • Deutsch
  • Log In
    or
  • Research Outputs
  • Projects
  • Researchers
  • Institutes
  • Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Evaluation of 3D feature descriptors for classification of surface geometries in point clouds
 
  • Details
  • Full
Options
2012
  • Konferenzbeitrag

Titel

Evaluation of 3D feature descriptors for classification of surface geometries in point clouds

Abstract
This paper investigates existing methods for 3D point feature description with a special emphasis on their expressiveness of the local surface geometry. We choose three promising descriptors, namely Radius-Based Surface Descriptor (RSD), Principal Curvatures (PC) and Fast Point Feature Histograms (FPFH), and present an approach for each of them to show how they can be used to classify primitive local surfaces such as cylinders, edges or corners in point clouds. Furthermore these descriptor-classifier combinations have to hold an in-depth evaluation to show their discriminative power and robustness in real world scenarios. Our analysis incorporates detailed accuracy measurements on sparse and noisy point clouds representing typical indoor setups for mobile robot tasks and considers the resource consumption to assure real-time processing.
Author(s)
Arbeiter, Georg
Fuchs, Steffen
Bormann, Richard
Fischer, Jan
Verl, Alexander
Hauptwerk
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2012. Conference Proceedings. Vol.3
Konferenz
International Conference on Intelligent Robots and Systems (IROS) 2012
DOI
10.1109/IROS.2012.6385552
File(s)
002.pdf (1.92 MB)
Language
Englisch
google-scholar
IPA
Tags
  • Punktwolke

  • 3D

  • 3D-Bildverarbeitung

  • point cloud

  • Oberflächengeometrie

  • Mustererkennung

  • Klassifikation

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Send Feedback
© 2022