• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Investigation of the solder joint fatigue life in combined vibration and thermal cycling tests
 
  • Details
  • Full
Options
2010
Conference Paper
Title

Investigation of the solder joint fatigue life in combined vibration and thermal cycling tests

Abstract
In this paper, we discuss lifetime prediction for flip chips under temperature and vibration loading in terms of the failure mechanisms related to solder joint fatigue. Our approach does not need additional data from the experiment but can be used in the design stage. For lifetime prediction solder fatigue coefficients from the literature and results from Finite Element Analysis (FEA) are processed by a MATLAB-routine. The predictions are compared to range of in-house experiments on combined loading. In the experimental setup, a statistically relevant number of specimens with single bump in-situ resistance monitoring are used to address the statistical scatter of the lifetime. Therefore, statements on the statistical distribution of solder joint failure in combined loading tests can be formulated. A laser vibrometer is used to determine exact accelerations and deflections of the Printed Circuit Board (PCB). In the failure analysis, ion-etched cross sections of the faile d solder bumps are prepared. The features of microstructural transformation and crack-paths are discussed for temperature cycling-only, vibration-only, and combined load experiments. Finally, the model prediction is compared to the experimentally determined solder joint lifetimes and the ranges of good agreement are discussed as well as the range with less agreement.
Author(s)
Eckert, T.
Krüger, M.
Müller, W.H.
Nissen, N.F.
Reichl, H.
Mainwork
60th Electronic Components and Technology Conference, ECTC 2010. Proceedings. Part 2  
Conference
Electronic Components and Technology Conference (ECTC) 2010  
DOI
10.1109/ECTC.2010.5490854
Language
English
Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024