• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. OpenCL vs. CUDA for ray tracing
 
  • Details
  • Full
Options
2010
Conference Paper
Title

OpenCL vs. CUDA for ray tracing

Abstract
For many years the Graphics Processing Unit (GPU) of common desktops was just used to accelerate certain parts of the graphics pipeline. After developers had access to the native instruction set and memory of the massive parallel computational elements of GPUs a lot has changed. GPUs became powerful and programmable. Nowadays two SDKs are most used for GPU programming: CUDA and OpenCL. CUDA is the most adopted general purpose parallel computing architecture for GPUs but is restricted to Nvidia graphic cards only. In contrast, OpenCL is a new royalityfree framework for parallel programming intended to be portable across different hardware manufacturers or even different platforms. In this paper, we evaluate both solutions considering a typical parallel algorithm: Ray Tracing. We show our performance results and experiences on developing both implementations that could be easily adapted to solve other problems.
Author(s)
Huff, Rafael
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Neves, Tiago
Univ. do Minho
Gierlinger, Thomas
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Kuijper, Arjan  orcid-logo
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Stork, André
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Fellner, Dieter W.
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Mainwork
XII Symposium on Virtual and Augmented Reality, SVR 2010  
Conference
Symposium on Virtual and Augmented Reality (SVR) 2010  
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • ray tracing

  • parallel programming

  • programmable graphics hardware

  • Compute Unified Device Architecture (CUDA)

  • Forschungsgruppe Semantic Models, Immersive Systems (SMIS)

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024