• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Learning optical flow
 
  • Details
  • Full
Options
2008
Conference Paper
Title

Learning optical flow

Abstract
Assumptions of brightness constancy and spatial smoothness underlie most optical flow estimation methods. In contrast to standard heuristic formulations, we learn a statistical model of both brightness constancy error and the spatial properties of optical flow using image sequences with associated ground truth flow fields. The result is a complete probabilistic model of optical flow. Specifically, the ground truth enables us to model how the assumption of brightness constancy is violated in naturalistic sequences, resulting in a probabilistic model of "brightness inconstancy". We also generalize previous high-order constancy assumptions, such as gradient constancy, by modeling the constancy of responses to various linear filters in a high-order random field framework. These filters are free variables that can be learned from training data. Additionally we study the spatial structure of the optical flow and how motion boundaries are related to image intensity boundaries. Spatial smoothness is modeled using a Steerable Random Field, where spatial derivatives of the optical flow are steered by the image brightness structure. These models provide a statistical motivation for previous methods and enable the learning of all parameters from training data. All proposed models are quantitatively compared on the Middlebury flow dataset.
Author(s)
Sun, Deqing
Brown University
Roth, Stefan
TU Darmstadt GRIS
Lewis, J.P.
Weta Digital Ltd
Black, Michael
Brown University
Mainwork
Computer vision - ECCV 2008. 10th European Conference on Computer Vision. Proceedings. Pt.3  
Conference
European Conference on Computer Vision (ECCV) 2008  
DOI
10.1007/978-3-540-88690-7_7
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • machine learning

  • computer vision

  • Markov Random Field

  • optical flow

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024