• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Abschlussarbeit
  4. Risk Aware Reinforcement Learning with Safety Layer
 
  • Details
  • Full
Options
2021
Master Thesis
Title

Risk Aware Reinforcement Learning with Safety Layer

Abstract
This thesis aims to analyze the effects of combining two different safe reinforcement learning algorithms to cover the shortcomings of each algorithms. Firstly, a safety layer algorithm which corrects the actions leading to error states is implemented. Safety layer is combined with two different risk sensitive reinforcement learning algorithms: a variance constrained deep deterministic policy gradient algorithm and a risk sensitive distributional deep deterministic policy gradients algorithm. The results are evaluated by comparing rewards, episode lengths, action corrections and variance of the returns provided by vanilla deep deterministic policy gradients algorithms and risk-aware deep deterministic policy gradients algorithms combined with safety layers.
Thesis Note
München, TU, Master Thesis, 2021
Author(s)
Tuna, Ongun
Fraunhofer-Institut für Kognitive Systeme IKS  
Advisor(s)
Buss, Martin
Technische Univ. München
Leibold, Marion
Technische Univ. München
Schmoeller da Roza, Felippe
Fraunhofer-Institut für Kognitive Systeme IKS  
Publishing Place
München
Funder
Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie StMWi  
Language
English
Fraunhofer-Institut für Kognitive Systeme IKS  
Keyword(s)
  • reinforcement learning

  • RL

  • safety

  • risk

  • safety layer

  • distributional deep deterministic policy gradients

  • variance constrained policy gradients

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024