• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Abschlussarbeit
  4. Two-dimensional circulation-preserving fluid simulation with discrete exterior calculus
 
  • Details
  • Full
Options
2011
Bachelor Thesis
Title

Two-dimensional circulation-preserving fluid simulation with discrete exterior calculus

Abstract
The development of efficient and stable fluid simulations is a challenging task in computer graphics. Elcott et al. [6] describe an approach, based on Discrete Exterior Calculus for simulating the fluid flow. A vorticity based formulation of the incompressible Navier-Stokes equations is used, resulting in a mass-conserving representation of the velocity field by definition. This approach preserves vorticity at a discrete level, resulting in a visually more realistic fluid flow. We extend this approach to regular grids in two dimensions. So, we avoid computationally expensive mesh constructions. We discuss non-trivial boundary conditions and arbitrary topologies. The vorticity conservation properties are compared with the classical mesh based approach of Elcott et. al. We especially analyze the corresponding pressure fields near the boundaries of inner objects.
Thesis Note
Darmstadt, TU, Bachelor Thesis, 2011
Author(s)
Räsch, Sascha
Advisor(s)
Weber, Daniel
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Publishing Place
Darmstadt
Language
English
Fraunhofer-Institut für Graphische Datenverarbeitung IGD  
Keyword(s)
  • fluid simulation

  • discrete exterior calculus (DEC)

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024