• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Boosting dimethylamine formation selectivity in a membrane reactor by in situ water removal
 
  • Details
  • Full
Options
2022
Journal Article
Title

Boosting dimethylamine formation selectivity in a membrane reactor by in situ water removal

Abstract
Mono-, di-, and trimethylamine are the products of the successive methylation of ammonia. Using narrow-pore acidic catalysts of the CHA family like H-SAPO-34 or H-SSZ-13, the formation of the thermodynamically but bulky trimethylamine can be suppressed due to steric effects; thus, methylation is stopped at dimethylamine. In this work, the continuous in situ removal of the byproduct water through the 4 Å wide pores in an LINDE Type A (LTA) (grown on an a-Al2O3 support) membrane reactor further increased the selectivity toward the economically desired product dimethylamine by 50%. This experimental finding can be explained by the release of adsorbed water blocking the catalytic site. Water removal through the hydrophilic LTA zeolite membrane allows methanol to adsorb at the acidic catalyst sites, which in turn accelerates the methylation rate of monomethylamine to the desired product dimethylamine. Further methylation to trimethylamine as the thermodynamically most favored product is not possible in narrow-pore catalysts because of space restrictions, but it takes place in the 12-membered-ring H-Mordenite (H-MOR) catalyst.
Author(s)
Best, Felix
Leibniz-Universität Hannover
Mundstock, Alexander
Leibniz-Universität Hannover
Kißling, Patrick
Leibniz-Universität Hannover
Richter, Hannes  orcid-logo
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS  
Hindricks, Karen D. J.
Leibniz-Universität Hannover
Huang, Aisheng
Pädagogische Universität Ostchina
Behrens, Peter
Leibniz-Universität Hannover
Caro, Jürgen
Leibniz-Universität Hannover
Journal
Industrial and Engineering Chemistry Research  
Funder
Deutsche Forschungsgemeinschaft DFG  
Deutsche Forschungsgemeinschaft DFG  
Deutsche Forschungsgemeinschaft DFG  
DOI
10.1021/acs.iecr.1c04149
Language
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS  
Keyword(s)
  • Catalysts

  • higher alcohols

  • adsorption

  • ammonia

  • Membranes

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024