• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Towards interpretable machine learning for automated damage detection based on ultrasonic guided waves
 
  • Details
  • Full
Options
2022
Journal Article
Title

Towards interpretable machine learning for automated damage detection based on ultrasonic guided waves

Abstract
Data-driven analysis for damage assessment has a large potential in structural health monitoring (SHM) systems, where sensors are permanently attached to the structure, enabling continuous and frequent measurements. In this contribution, we propose a machine learning (ML) approach for automated damage detection, based on an ML toolbox for industrial condition monitoring. The toolbox combines multiple complementary algorithms for feature extraction and selection and automatically chooses the best combination of methods for the dataset at hand. Here, this toolbox is applied to a guided wave-based SHM dataset for varying temperatures and damage locations, which is freely available on the Open Guided Waves platform. A classification rate of 96.2% is achieved, demonstrating reliable and automated damage detection. Moreover, the ability of the ML model to identify a damaged structure at untrained damage locations and temperatures is demonstrated.
Author(s)
Schnur, Christopher
Universität des Saarlands
Goodarzi, Payman
Universität des Saarlands
Lugovtsova, Yevgeniya
Bundesanstalt für Materialforschung und -prüfung
Bulling, Jannis
Bundesanstalt für Materialforschung und -prüfung
Prager, Jens
Bundesanstalt für Materialforschung und -prüfung
Tschöke, Kilian  orcid-logo
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS  
Moll, Jochen
Goethe-Universität Frankfurt am Main
Schütze, Andreas
Universität des Saarlands / Zentrum für Mechatronik und Automatisierungstechnik
Schneider, Tizian
Universität des Saarlands / Zentrum für Mechatronik und Automatisierungstechnik
Journal
Sensors. Online journal  
Open Access
DOI
10.3390/s22010406
Language
English
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS  
Keyword(s)
  • composite structures

  • structural health monitoring

  • carbon fibre-reinforced plastic

  • interpretable machine learning

  • automotive industry

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024