• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Enabling automated engineering's project progress measurement by using data flow models and digital twins
 
  • Details
  • Full
Options
2021
Journal Article
Title

Enabling automated engineering's project progress measurement by using data flow models and digital twins

Abstract
A significant challenge of managing successful engineering projects is to know their status at any time. This paper describes a concept of automated project progress measurement based on data flow models, digital twins, and machine learning (ML) algorithms. The approach integrates information from previous projects by considering historical data using ML algorithms and current unfinished artifacts to determine the degree of completion. The information required to measure the progress of engineering activities is extracted from engineering artifacts and subsequently analyzed and interpreted according to the project's progress. Data flow models of the engineering process help understand the context of the analyzed artifacts. The use of digital twins makes it possible to connect plan data with actual data during the completion of the engineering project.
Author(s)
Ebel, Helena
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Riedelsheimer, Theresa  
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Stark, Rainer
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK
Journal
International Journal of Engineering Business Management : IJEBM  
Open Access
DOI
10.1177/18479790211033697
Language
English
Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK  
Keyword(s)
  • digital twin

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024