• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. A Low-Power RRAM Memory Block for Embedded, Multi-Level Weight and Bias Storage in Artificial Neural Networks
 
  • Details
  • Full
Options
2021
Journal Article
Title

A Low-Power RRAM Memory Block for Embedded, Multi-Level Weight and Bias Storage in Artificial Neural Networks

Abstract
Pattern recognition as a computing task is very well suited for machine learning algorithms utilizing artificial neural networks (ANNs). Computing systems using ANNs usually require some sort of data storage to store the weights and bias values for the processing elements of the individual neurons. This paper introduces a memory block using resistive memory cells (RRAM) to realize this weight and bias storage in an embedded and distributed way while also offering programming and multi-level ability. By implementing power gating, overall power consumption is decreased significantly without data loss by taking advantage of the non-volatility of the RRAM technology. Due to the versatility of the peripheral circuitry, the presented memory concept can be adapted to different applications and RRAM technologies.
Author(s)
Pechmann, Stefan
University of Bayreuth, Germany
Mai, Timo
Friedrich-Alexander University Erlangen-Nuernberg, Germany
Potschka, Julian
Friedrich-Alexander University Erlangen-Nuernberg, Germany
Reiser, Daniel
Brandenburg University of Technology Cottbus, Germany
Reichel, Peter
Friedrich-Alexander University Erlangen-Nuernberg, Germany
Breiling, Marco  orcid-logo
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Reichenbach, Marc
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Hagelauer, Amelie  
Fraunhofer-Einrichtung für Mikrosysteme und Festkörper-Technologien EMFT  
Journal
Micromachines  
Project(s)
LO3-ML
Funder
Bundesministerium für Bildung und Forschung BMBF (Deutschland)  
Open Access
File(s)
Download (491.16 KB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.3390/mi12111277
10.24406/publica-r-270734
Additional link
Full text
Language
English
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Fraunhofer-Einrichtung für Mikrosysteme und Festkörper-Technologien EMFT  
Fraunhofer-Institut für Integrierte Schaltungen IIS  
Keyword(s)
  • artificial neural networks (ANN)

  • low power

  • embedded memory

  • memory block

  • multi-level

  • RRAM

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024