• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Synthesis of porous silicon, nickel and carbon layers by vapor phase dealloying
 
  • Details
  • Full
Options
2021
Journal Article
Title

Synthesis of porous silicon, nickel and carbon layers by vapor phase dealloying

Abstract
Porous thin films have various application fields, e.g., for energy conversion in fuel cells, energy storage in lithium ion batteries or supercapacitors as well for catalysis, filtration and sensing. We synthesized porous thin films by co-evaporating a low-vapor-pressure material (e.g., Si, Ni or C) together with zinc and depositing a compact layer of resulting composite. High-rate deposition process up to 100 nm/s was realized by electron beam physical vapor deposition (EB-PVD) of the materials from two graphite crucibles with a fast deflected electron beam in high vacuum. Immediately after deposition, the coated substrates were heated up in vacuum to a temperature above 500 °C and thereby zinc is removed selectively. Due to its higher vapor pressure against that of remaining component, zinc is expelled from the layer and vacancies are generated by so called vapor phase dealloying (VPD). We investigated the feasibility of VPD process for the elements silicon, nickel and carbon. The elemental composition and the morphology of the layers prior and after thermal annealing were analyzed by scanning electron microscopy, by energy-dispersive X-ray spectrometry and by X-ray diffraction.
Author(s)
Saager, Stefan  
Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP  
Scheffel, Bert  
Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP  
Modes, Thomas  
Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP  
Zywitzki, Olaf  
Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP  
Journal
Surface and coatings technology  
Project(s)
PoSiBat
Funder
European Commission EC  
DOI
10.1016/j.surfcoat.2021.127812
Language
English
Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP  
Keyword(s)
  • high deposition rate

  • thin films

  • electron beam

  • evaporation

  • dealloying

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024