• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Pristine and Modified Porous Membranes for Zinc Slurry-Air Flow Battery
 
  • Details
  • Full
Options
2021
Journal Article
Title

Pristine and Modified Porous Membranes for Zinc Slurry-Air Flow Battery

Abstract
The membrane is a crucial component of Zn slurry-air flow battery since it provides ionic conductivity between the electrodes while avoiding the mixing of the two compartments. Herein, six commercial membranes (CellophaneTM 350PØØ, Zirfon®, Fumatech® PBI, Celgard® 3501, 3401 and 5550) were first characterized in terms of electrolyte uptake, ion conductivity and zincate ion crossover, and tested in Zn slurry-air flow battery. The peak power density of the battery employing the membranes was found to depend on the in-situ cell resistance. Among them, the cell using Celgard® 3501 membrane, with in-situ area resistance of 2 O cm2 at room temperature displayed the highest peak power density (90 mW cm−2). However, due to the porous nature of most of these membranes, a significant crossover of zincate ions was observed. To address this issue, an ion-selective ionomer containing modified poly(phenylene oxide) (PPO) and N-spirocyclic quaternary ammonium monomer was coated on a Celgard® 3501 membrane and crosslinked via UV irradiation (PPO-3.45 + 3501). Moreover, commercial FAA-3 solutions (FAA, Fumatech) were coated for comparison purpose. The successful impregnation of the membrane with the anion-exchange polymers was confirmed by SEM, FTIR and Hg porosimetry. The PPO-3.45 + 3501 membrane exhibited 18 times lower zincate ions crossover compared to that of the pristine membrane (5.2 × 10−13 vs. 9.2 × 10-12 m2 s−1). With low zincate ions crossover and a peak power density of 66 mW cm−2, the prepared membrane is a suitable candidate for rechargeable Zn slurry-air flow batteries.
Author(s)
Tsehaye, Misgina Tilahun
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP
Gebreslassie, Getachew Teklay
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP
Choi, Nak Heon
Fraunhofer-Institut für Chemische Technologie ICT  
Milian, Diego
Univ. Grenoble Alpes, CNRS, Grenoble INP
Martin, Vincent
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP
Fischer, Peter  
Fraunhofer-Institut für Chemische Technologie ICT  
Tübke, Jens  
Fraunhofer-Institut für Chemische Technologie ICT  
Kissi, Nadia El
Univ. Grenoble Alpes, CNRS, Grenoble INP
Donten, Mateusz L.
Amer-Sil S.A.
Alloin, Fannie
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP
Iojoiu, Cristina
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP
Journal
Molecules  
Open Access
File(s)
Download (1.99 MB)
Rights
CC BY 4.0: Creative Commons Attribution
DOI
10.24406/publica-r-270113
10.3390/molecules26134062
Language
English
Fraunhofer-Institut für Chemische Technologie ICT  
Keyword(s)
  • Chemical Sciences

  • material chemistry

  • membrane coating

  • power density

  • UV irradiation

  • Zinc slurry-air flow battery

  • Zincate crossover

  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024