• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Artikel
  4. Learning vector quantization and relevances in complex coefficient space
 
  • Details
  • Full
Options
2020
Journal Article
Title

Learning vector quantization and relevances in complex coefficient space

Abstract
In this contribution, we consider the classification of time series and similar functional data which can be represented in complex Fourier and wavelet coefficient space. We apply versions of learning vector quantization (LVQ) which are suitable for complex-valued data, based on the so-called Wirtinger calculus. It allows for the formulation of gradient-based update rules in the framework of cost-function-based generalized matrix relevance LVQ (GMLVQ). Alternatively, we consider the concatenation of real and imaginary parts of Fourier coefficients in a real-valued feature vector and the classification of time-domain representations by means of conventional GMLVQ. In addition, we consider the application of the method in combination with wavelet-space features to heartbeat classification.
Author(s)
Straat, M.
Kaden, M.
Gay, M.
Villmann, T.
Lampe, A.
Seiffert, U.
Biehl, M.
Melchert, F.
Journal
Neural computing & applications  
Open Access
DOI
10.1007/s00521-019-04080-5
Language
English
Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF  
Fraunhofer-Institut für Verkehrs- und Infrastruktursysteme IVI  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024